New legislation affecting Building Officials (continued from P. 11)
PA 99-140 requires and additional pool alarm for residential swimming pools for one or more families before a permit can be issued for a new pool or substantial alteration of an existing pool. The alarm must emit a sound of 50 decibels when a 15 pound object enters the water. The alarm is in addition to all other pool barrier requirements. The law is effective October 1, 1999.
Required Pool Inspections

1. REBAR / STRUCTURAL / SOIL INSPECTIONS: All rebar to be supported for concrete encasement. *Note Use of wood or clay brick not acceptable as support.

2. BONDING: Metal parts, per section 680 National Electrical Code or Chapter 42 IRC. Needs to be inspected before covering.

FOR POOL & SPA

3. UNDERGROUND PIPING: To skimmers, drains, etc. Needs to be inspected before covering.
4. UNDERGROUND WIRING: From house to pool, pool lighting, etc. Needs to be inspected before covering and access to house is required.
5. FINAL INSPECTION FOR CO: Before scheduling final inspection, approval from Planning and Zoning (i.e.; As Built Survey), is required. All fencing, gates, closures, pool and surrounding work needs to be complete.

Note Underground Piping and Wiring will be inspected at the same time. Reinspection fee is $25.00. This fee is paid when Inspection is scheduled and job is not ready.
APPENDIX G

SWIMMING POOLS, SPAS, AND HOT TUBS

Section AG101
General
AG101.1 General. The provision of this appendix shall control the design and

Section AG102
Definitions
AG102.1 General. For the purposes of these requirements, the terms used shall be defined as follows and as set forth in Chapter 2.

ABOVE GROUND/ON GROUND POOL.
See “Swimming Pool”

BARRIER. A fence, building wall, or combination there-of which completely surrounds the swimming pool and obstructs access to the swimming pool.

HOT TUB. See “Swimming Pool”

RESIDENTIAL. That which is situated on the premises of a detached one- or two-family dwelling or a one-family townhouse not more than three stories height.

SPA, NONPORTABLE. See “Swimming Pool”

SPA, PORTABLE. A nonpermanent structure intended for recreational bathing, in which all controls, water-heating and water-circulation equipment are an integral part of the product.

SWIMMING POOL. Any structure intended for recreational bathing that contains water over 24 inches (610 mm) deep. This includes in-ground, above ground, and on-ground swimming pools, hot tubs, and spas.

collection of swimming pools, spas, and hot tubs installed in or on the lot of a one- and two-family dwelling.

SWIMMING POOL, INGROUND. A swimming pool which is totally contained within a structure and surrounded on all four sides by walls of said structure.

SWIMMING POOL, OUTDOOR. Any swimming pool which is not an indoor pool.

Section AG103
Swimming Pools
AG103.1 In-ground pools. In-ground pools shall be designed and constructed in conformance with ANSI/NSPI-5 as listed in Section AG107.

AG103.2 Above ground and on-ground pools. Above-ground and on-ground pools shall be designed and constructed in conformance with ANSI/NSPI-5 as listed in Section AG107.

Section AG104
Spas and Hot Tubs
AG104.1 Permanently installed spas and hot tubs. Permanently installed spas and hot tubs shall be designed and constructed in conformance with ANSI/NSPI-3 as listed in Section AG107.

AG104.2 Portable spas and hot tubs. Portable spas and hot tubs shall be designed and constructed in conformance with ANSI/NSPI-6 as listed in Section AG107.
AG105.2 OUTDOOR SWIMMING POOL. An outdoor swimming pool including in-ground, above-ground, or on-ground pools, hot tubs and spas shall be provided with a barrier that shall comply with the following:

1. The top of the barrier shall be at least 48 inches above grade measured on the side of the barrier that faces away from the swimming pool. The maximum vertical clearance between grade and the bottom of the barrier shall be 2 inches measured on the side of the barrier that faces away from the swimming pool. Where the top of the pool structure is above grade, such as an above-ground pool, the barrier may be at ground level, such as the pool structure, or mounted on top of the pool structure. Where the barrier is mounted on top of the pool structure, the maximum vertical clearance between the top of the pool structure and the bottom of the barrier shall be 4 inches.

2. Openings in the barrier shall not allow passage of a 4-inch diameter sphere.

3. Solid barriers that do not have openings, such as masonry or stone walls, shall not contain indentations or protrusions except for normal construction tolerances and tooled masonry joints.

4. Where the barrier is composed of horizontal and vertical members and the distance between tops of the horizontal members is less than 45 inches, the horizontal members shall be located on the swimming pool side of the barrier. Spacing between vertical members shall not exceed 1 ¾ inches in width. Where there are decorative cutouts within vertical or horizontal members, spacing within the cutouts shall not exceed 1 ¾ inches in width.

5. Where the barrier is composed of horizontal and vertical members and the distance between the tops of the horizontal members is 45 inches or more, spacing between vertical members shall not allow passage of a 4-inch diameter sphere. Where there are decorative cutouts within vertical members, spacing within the cutouts shall not exceed 1 ¾ inches in width.

6. Maximum mesh size for chain link fences shall be 2 ¼ inches square unless the fence is provided with slats fastened at the top or the bottom which reduce the openings to not more than 1 ¾ inches.

7. Where the barrier is composed of diagonal members, such as lattice fence, the maximum opening formed by the diagonal members shall not be more than 1 ¾ inches.

8. Access gates shall comply with the requirements of Section AG105.2, Items 1 through 7, and shall be equipped to accommodate a locking device. Pedestrian access gates shall open outward away from the pool and shall be self-closing and have a self-latching device. Gates other than pedestrian access gates shall have a self-latching device. Where the release mechanism of the self-latching device is located less than 54 inches from the bottom of the gate, the release mechanism and surrounding openings shall comply with the following: The release mechanism shall be located on the pool side of the gate at least 3 inches below the top of the gate and the gate and barrier shall have no opening greater than ½ inches within 18 inches of the release mechanism.
9. Where a wall of a dwelling serves as part of the pool barrier, one of the following conditions shall be met:

9.1 The pool shall be equipped with a power safety cover in compliance with ASTM F1346-91; or

9.2 All doors with direct access to the pool through that wall shall be equipped with an alarm that produces an audible warning when the door and its screen, if present, are opened. The alarm shall sound continuously for a minimum of 30 seconds within 7 seconds after the door and its screen, if present, are opened and be capable of being heard throughout the house during normal activities. The alarm shall automatically reset under all conditions. The alarm shall be equipped with a manual means, such as a touch pad or switch, to temporarily deactivate the alarm for a single opening. Such deactivation shall last for not more than 15 seconds. The deactivation device(s) shall be located at least 54 inches above the threshold of the door; or

9.3 All doors with direct access to the pool through that wall shall be equipped with a self-closing and self-latching device with the release mechanism located a minimum of 54 inches above the door threshold.

Swinging doors shall open away from the pool area.

10. Where an above-ground or on-ground pool structure is used as a barrier or where the barrier is mounted on top of the pool structure, and the means of access is a ladder or steps, then the ladder or steps shall be surrounded by a barrier which meets the requirements of section AG105.2, Items 1 through 9.

CT Amendment- AG105.6 Temporary enclosure. A temporary enclosure shall be installed prior to the commencement of the installation of any in-ground swimming pool unless the permanent barrier specified in Section AG105.2 is in place prior to the commencement of the installation. The temporary enclosure shall be a minimum of 4 feet in height, shall have no openings that will allow passage of a 4-inch sphere and shall be equipped with a positive latching device on any openings.

WILL NOT PERFORM ANY INSPECTIONS IF THIS BARRIER IS NOT IN PLACE.

POOL ALARMS

AG105.7 requires pool alarms for residential pools. Alarm must emit min. 50 db sound when a 15 lb. object enters the water. Hot tubs & portable spas are exempt. Alarm does not take place of required barrier.
E4204.2 Bonded parts. The parts of pools, spas, and hot tubs specified in Items 1 through 7 shall be bonded together using insulated, covered or bare solid copper conductors not smaller than 8 AWG or using rigid metal conduit of brass or other identified corrosion-resistant metal. An 8 AWG or larger solid copper bonding conductor provided to reduce voltage gradients in the pool, spa, or hot tub area shall not be required to be extended or attached to remote panelboards, service equipment, or electrodes. Connections shall be made by exothermic welding or by listed pressure connectors or clamps that are labeled as being suitable for the purpose and that are made of stainless steel, brass, copper or copper alloy. Connection devices or fittings that depend solely on solder shall not be used. Sheet metal screws shall not be used to connect bonding conductors or connection devices:

1. Conductive pool shells. Bonding to conductive pool shells shall be provided as specified in Item 1.1 or 1.2. Poured concrete, pneumatically applied or sprayed concrete, and concrete block with painted or plastered coatings shall be considered to be conductive materials because of their water permeability and porosity. Vinyl liners and fiberglass composite shells shall be considered to be nonconductive materials.

1.1. Structural Reinforcing Steel. Unencapsulated structural reinforcing steel shall be bonded together by steel tie wires or the equivalent. Where structural reinforcing steel is encapsulated in a nonconductive compound, a copper conductor grid shall be installed in accordance with Item 1.2.

1.2. Copper Conductor Grid. A copper conductor grid shall be provided and shall comply with Items 1.2.1 through 1.2.4:

1.2.1. It shall be constructed of minimum 8 AWG bare solid copper conductors bonded to each other at all points of crossing.

1.2.2. It shall conform to the contour of the pool and the pool deck.

1.2.3. It shall be arranged in a 12 inch (305 mm) by 12 inch (305 mm) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 4 inches (102 mm).

1.2.4. It shall be secured within or under the pool not more than 6 inches (152 mm) from the outer contour of the pool shell.

2. Perimeter surfaces. The perimeter surface shall extend for 3 feet (914 mm) horizontally beyond the inside walls of the pool and shall include unpaved surfaces, poured concrete and other types of paving. Bonding to perimeter surfaces shall be provided as specified in Item 2.1 or 2.2 and shall be attached to the pool, spa, or hot tub reinforcing steel or copper conductor grid at a minimum of four points uniformly spaced around the perimeter of the pool, spa, or hot tub. For nonconductive pool shells, bonding at four points shall not be required.

2.1. Structural Reinf orcing Steel. Structural reinforcing steel shall be bonded in accordance with Item 1.1.

2.2. Alternate Means. Where structural reinforcing steel is not available or is encapsulated in a nonconductive compound, a copper conductor(s) shall be used in accordance with Items 2.2.1 through 2.2.5:

2.2.1. At least one minimum 8 AWG bare solid copper conductor shall be provided.

2.2.2. The conductors shall follow the contour of the perimeter surface.

2.2.3. Splices shall be listed.

2.2.4. The required conductor shall be 18 to 24 inches (457 to 610 mm) from the inside walls of the pool.

2.2.5. The required conductor shall be secured within or under the perimeter surface 4 to 6 inches (102 mm to 152 mm) below the subgrade.

3. Metallic components. All metallic parts of the pool structure, including reinforcing metal not addressed in Item 1.1, shall be bonded. Where reinforcing steel is encapsulated with a nonconductive compound, the reinforcing steel shall not be required to be bonded.

4. Underwater lighting. All metal forming shells and mounting brackets of no-niche luminaires shall be bonded.

Exception: Listed low-voltage lighting systems with nonmetallic forming shells shall not require bonding.

5. Metal fittings. All metal fittings within or attached to the pool structure shall be bonded. Isolated parts that are not over 4 inches (102 mm) in any dimension and do not penetrate into the pool structure more than 1 inch (25.4 mm) shall not require bonding.

6. Electrical equipment. Metal parts of electrical equipment associated with the pool water circulating system, including pump motors and metal parts of equipment associated with pool covers, including electric motors, shall be bonded.

Exception: Metal parts of listed equipment incorporating an approved system of double insulation shall not be bonded.

6.1. Double-Insulated Water Pump Motors. Where a double-insulated water pump motor is installed under the provisions of this item, a solid 8 AWG copper conductor of sufficient length to make a bonding connection to a replacement motor shall be extended from the bonding grid to an accessible point in the vicinity of the pool pump motor.
Where there is no connection between the swimming pool bonding grid and the equipment grounding system for the premises, this bonding conductor shall be connected to the equipment grounding conductor of the motor circuit.

6.2. Pool Water Heaters. For pool water heaters rated at more than 50 amperes and having specific instructions regarding bonding and grounding, only those parts designated to be bonded shall be bonded and only those parts designated to be grounded shall be grounded.

7. Metal wiring methods and equipment. Metal-sheathed cables and raceways, metal piping, and all fixed metal parts shall be bonded.

Exceptions:

1. Those separated from the pool by a permanent barrier shall not be required to be bonded.
2. Those greater than 5 feet (1524 mm) horizontally from the inside walls of the pool shall not be required to be bonded.
3. Those greater than 12 feet (3658 mm) measured vertically above the maximum water level of the pool, or as measured vertically above any observation stands, towers, or platforms, or any diving structures, shall not be required to be bonded.

E4204.3 Pool water. The pool water shall be intentionally bonded by means of a conductive surface area not less than 9 square inches (5806 mm²) installed in contact with the pool water. This bond shall be permitted to consist of parts that are required to be bonded in Section E4204.2.

E4204.4 Bonding of outdoor hot tubs and spas. Outdoor hot tubs and spas shall comply with the bonding requirements of Sections E4204.1 through E4204.3. Bonding by metal-to-metal mounting on a common frame or base shall be permitted. The metal bands or hoops used to secure wooden staves shall not be required to be bonded as required in Section E4204.2.

E4204.5 Bonding of indoor hot tubs and spas. The following parts of indoor hot tubs and spas shall be bonded together:

1. All metal fittings within or attached to the hot tub or spa structure.
2. Metal parts of electrical equipment associated with the hot tub or spa water circulating system, including pump motors.
3. Metal raceway and metal piping that are within 5 feet (1524 mm) of the inside walls of the hot tub or spa and that are not separated from the spa or hot tub by a permanent barrier.
4. All metal surfaces that are within 5 feet (1524 mm) of the inside walls of the hot tub or spa and that are not separated from the hot tub or spa area by a permanent barrier.

Exceptions:

1. Small conductive surfaces not likely to become energized, such as air and water jets and drain fittings, where not connected to metallic piping, towel bars, mirror frames, and similar nonelectrical equipment, shall not be required to be bonded.

2. Metal parts of electrical equipment associated with the water circulating system, including pump motors that are part of a listed self-contained hot tub or spa.

5. Electrical devices and controls that are not associated with the hot tubs or spas and that are located less than 5 feet (1524 mm) from such units.

E4204.5.1 Methods. All metal parts associated with the hot tub or spa shall be bonded by any of the following methods:

1. The interconnection of threaded metal piping and fittings.
2. Metal-to-metal mounting on a common frame or base
3. The provision of an insulated, covered or bare solid copper bonding jumper not smaller than 8 AWG. It shall not be the intent to require that the 8 AWG or larger solid copper bonding conductor be extended or attached to any remote panelboard, service equipment, or any electrode, but only that it shall be employed to eliminate voltage gradients in the hot tub or spa area as prescribed.

E4204.5.2 Connections. Connections shall be made by exothermic welding or by listed pressure connectors or clamps that are labeled as being suitable for the purpose and that are made of stainless steel, brass, copper or copper alloy. Connection devices or fittings that depend solely on solder shall not be used. Sheet metal screws shall not be used to connect bonding conductors or connection devices.

SECTION E4205 GROUNDING

E4205.1 Equipment to be grounded. The following equipment shall be grounded:

1. Through-wall lighting assemblies and underwater luminaires other than those low-voltage lighting products listed for the application without a grounding conductor.
2. All electrical equipment located within 5 feet (1524 mm) of the inside wall of the pool, spa or hot tub.
3. All electrical equipment associated with the recirculating system of the pool, spa or hot tub.
5. Transformer enclosures.
7. Panelboards that are not part of the service equipment and that supply any electrical equipment associated with the pool, spa or hot tub.
4 General requirements for suction entrapment avoidance systems and components

4.1 Codes. Pools and spas covered by this standard shall be constructed and operated to comply with all local, state, and federal codes governing safety and environmental regulations.

4.2 Electrical components. All associated electrical components installed in and/or adjacent to the circulation system shall comply with the requirements of the National Electrical Code, Article 680, Swimming pools, fountains, and similar installations, or the latest revision and any state or local codes.

4.3 DANGER. There is no backup for a missing or damaged suction outlet cover/grate. If any cover/grate is found to be damaged or missing, the pool or spa shall be immediately closed to bathers.

4.4 Water velocity. Water velocity in field fabricated piping is based on the maximum system flow rate (see 4.4.1). Maximum water velocity in branch suction piping (shown as bold lines in figures 1 - 14) shall be limited to 6 feet per second (fps) (1.829 mps) when one of a pair is blocked. In normal operation then, the branch suction piping velocity is 3 feet per second (0.914 mps). All other suction piping velocities shall be 6 fps (1.829 mps) for public pools or 8 fps (2.438 mps) for residential pools (shown as thin lines in figures 1 through 14).

4.4.1 Maximum system flow rate. The maximum system flow rate shall be determined by one of the following:

- TDH calculation for the circulation system of each pump; or
- Simplified TDH calculation (see definition); or
- The maximum flow capacity of the new or replacement pump, which shall be limited by the criteria of 4.4.

4.5 Listed suction outlet(s). Suction outlet covers/grates shall be tested and listed by a nationally recognized testing laboratory as conforming to the most recent edition of ASME/ANSI A112.19.8 and include a permanently marked flow rating tested to prevent hair entrapment. They are not governed by the velocity limitations of 4.4 and 4.6.

4.5.1 Field built sumps. Field built sumps shall be built so that the opening of the suction pipe will be no closer than 1.5 times its inside diameter from the bottom of the listed suction outlet cover/grate.

4.6 Minimum flow rating for each cover/grate. When used, submerged suction outlet arrangements shall be single unblockable, dual, or three-or-more as defined below. All shall be in the same body of water for the purposes of 4.6.1 and 4.6.2.

Table 1 - Flow rating for covers/grates

<table>
<thead>
<tr>
<th>Number of covers/grates per system</th>
<th>Minimum flow rating of each cover/grate % maximum system flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>66.7%</td>
</tr>
<tr>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>40%</td>
</tr>
<tr>
<td>6</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

Figure 1 – Pipe velocity

NOTE – In figure 1, each separate line leading to the suction line should be sized to handle the pump’s flow at 6 feet per second.
4.6.1 Single or dual outlets. The flow rating for each listed cover/grate shall be greater than the maximum system flow as determined in accordance with 4.4.1.

4.6.2 Three or more outlets. For a system with three or more covers/grates, the sum of the flow ratings shall be at least twice the maximum system flow rate as determined in accordance with 4.4.1, or alternatively see table 1.

Example: Two (2) 100 GPM cover/grates and one (1) 60 GPM cover/grate would have an allowable maximum system flow rate of 130 GPM \((100 + 100 + 60)/2 = 130\).

4.6.3 Warning: When using table 1 with covers/grates of different flow ratings on the same system, the lowest flow rating shall be used in calculating.

4.7 Dual cover/grate separation. Two covers/grates shall be separated by a minimum of 3 feet (914 mm) measured from center to center of suction pipes, (see figures 4, 5, 6, 8, 9, and 10) or located on two (2) different planes; i.e., one (1) on the bottom and one (1) on the vertical wall, or one (1) each on two (2) separate vertical walls. (See figures 7 and 14.)

4.8 Skimmers. Skimmers shall be vented to atmosphere through openings in the lid, or through a separate vent pipe, designed in accordance with 7.2, or incorporate an equalizer line. (See figure 3.)
4.8.1 Skimmer equalizer lines. Skimmer equalizer lines, when used, shall be located on the wall with the center no more than 18 inches (457 mm) below the maximum operating level. It shall be protected by a listed suction outlet cover/grate with a flow rating equal to the maximum system flow divided by the number of skimmers when piped through a common suction line, or the maximum flow rating of the skimmer, whichever is greater. (See figure 3.)

4.9 Wall vacuum fitting(s). When used, vacuum cleaner fitting(s) shall be located in an accessible position(s) at least 6 inches (152 mm) and no greater than 18 inches (457 mm) below the water level and the self closing, self-latching fitting shall comply with IAPMO SPS 4 – Special use suction fitting for swimming pools, spas and hot tubs (for suction side automatic swimming pool cleaners). In addition, the vacuum piping shall be equipped with a valve to remain in the closed position when not in use.

5 New construction

5.1 General. Methods to avoid entrapment in circulation systems, swim jet systems, alternative suction systems, and debris removal systems are shown in 5.2 through 5.10.

5.2 Submerged suction outlets are optional. Fully submerged suction outlets (main drains) are not required in pools and spas. Surface skimming or overflow systems shall be permitted to provide 100 percent of the required system flow.

5.3 Dual outlets. Dual-outlets, i.e., two listed suction outlets, are piped to a single, common suction line to the pump(s). The tee feeding from the common line between the suction outlets, to the pump(s) shall be located approximately midway between the outlets with flow out of the branch of the tee. See figures 4, 5, 6, and 7.

5.3.1 The flow rating of each cover/grate shall be at least equal to the system’s maximum flow rate.

5.3.2 Dual outlet separation. Dual outlets shall be separated by a minimum of 3 feet (914 mm) measured from center to center of the suction pipes (see figures 4, 5, and 6) or located on two (2) different planes, i.e., one (1) on the bottom and one (1) on the vertical wall, or one (1) each on two (2) separate vertical walls. (See figures 7 and 14.)

5.4 Three-or-more outlets. Three or more listed suction outlets are piped in parallel. Two of the outlets shall be piped with the tee feeding the suction line to the pump(s) located approximately midway between the two outlets. The additional outlet(s) shall be permitted when piped according to figures 8, 9, or 10.
5.4.1 For three or more outlets, the sum of the ratings of the covers/grates shall be at least twice the maximum system flow rate.

5.4.2 Three-or-more outlets are subject to the separation requirement only on the most widely spaced of the group. See figures 8, 9, or 10.

5.5 Single unblockable suction outlet

5.5.1 Single channel outlet. A single listed channel outlet shall be considered acceptable if the size of the perforated area is 3 inches (76 mm) or greater in width and 31 inches (787 mm) or greater in length. (See figures 11 and 12.)

5.5.2 Single unblockable outlet. (See figure 13.) Single unblockable covers shall be of any size and shape such that a representation of the torso of the 99 percentile adult male cannot sufficiently block it to the extent that it creates a body suction entrapment hazard. The torso is represented as a rectangle 18 inches x 23 inches (457 mm x 584 mm) with corners of radius 4 inches (102 mm).

5.6 Single outlet swim jet system. Single outlet swim jet systems consist of a combination fitting that incorporates a suction outlet and inlet in a single housing that is designed to move a large volume of water at high velocity in a single direction. Such systems shall be tested and listed by a nationally recognized testing laboratory as conforming to the most recent edition of ASME/ANSI A112.19.8 and include a permanently marked Flow Rating tested to prevent hair entrapment. They are not governed by the velocity limitations of 4.4.

5.7 Single outlet—alternative suction system. Single outlet—alternative suction systems consist of a single listed suction outlet cover/grate utilizing a venturi-driven system for circulating water. Such systems shall be tested and listed by a nationally recognized testing laboratory as conforming to the most recent edition of ASME/ANSI A112.19.17 and ASTM F 2387-04.

5.8 Gravity flow systems. Flow from a pool or spa to a vented reservoir (see definition) may be partially or fully submerged.
5.8.1 Pumps shall take suction from a vented reservoir rather than directly from the submerged suction outlets.

5.8.2 The vent interface with atmosphere shall be designed or modified to inhibit blockage or infestation and shall be clearly identified to discourage tampering, unless the vented reservoir is an integral part of the swimming pool such as a gutter or catch pool.

5.8.3 The vented reservoir shall be sized to accommodate pump start-up surge unless rated by the manufacturer.

5.8.4 When a manufactured reservoir is used, the connection of submerged suction outlets to the vented reservoir shall be placed in accordance with manufacturer's instructions to limit the drawdown.

5.8.5 Pipe shall be sized to provide the required flow at this drawdown.

5.8.6 Fully submerged gravity outlet(s). Fully submerged outlets in a gravity system shall be in accordance with 5.3, 5.4, or 5.5 and shall have a listed cover/grate(s) in accordance with 4.6.

5.8.7 Partially submerged gravity outlet. Partially submerged gravity outlets shall have a listed cover/grate in accordance with 4.6. Exception: Skimmers are not required to have a Listed cover/grate in accordance with 4.6.

5.8.7.1 WARNING! Unprotected overflow pipe (standpipe) outlets, another way to hold a minimum water level, pose a risk to bathers and shall not be used in pools and spas intended to be barrier accessible.

5.9 Outlet sumps in series. Two manufactured sumps or field-fabricated sumps, with listed suction outlet covers/grates, piped in series, are typically intended for debris removal. Between the debris suction outlet and the pump, there shall be one of the options listed in 5.9.1, 5.9.2, or 5.9.3 (see figure 14). The manufacturer of such debris removal systems shall test and approve for the purpose at least one of these.

5.9.1 One (1) additional suction outlet with listed suction outlet cover/grate located a
Pedestrian gate
Self-closing, self-latching gate that swings one way away from the pool. (421.10.1 #8)

4' high min. barrier fence (421.10.1 #1)

House

Door to house
Self-closing, self-latching
or
Door alarm
or
power safety cover
(421.10.1 #9.1, #9.2, #9.3)

Storm door

Sliding glass door to house
Self-closing, self-latching
or
Door alarm
or
power safety cover
(421.10.1 #9.1, #9.2, #9.3)

Access gate - optional
(lawn mower & big equipment)
- Latching and lockable

(421.10.1 #8)

Plan View

House

POOL

Water motion pool alarm
C.G.S. 29-265a
TOWN OF NEW CANAAN
77 MAIN STREET
NEW CANAAN, CT 06840
(203)594-3084
Fax (203)594-3121

As owner and/or contractor installing a pool at the property located at

__ I hear by acknowledge the following:

I have received the booklet entitled, “Swimming Pool, Spa, and Hot Tub Requirements,”
 o (Code Change Effective 2/28/14)
 o From the TOWN OF NEW CANAAN Building Department.

I acknowledge that the requirements contained in the booklet are part of Connecticut State Building Code.

The Swimming Pool, Pool & Spa, or Hot Tub to be installed on my property will comply with all pertinent Building Code requirements as contained in the booklet.

The pertinent Building Code requirements contained in the booklet will be completed prior to the final inspection and issuance of the Certificate of Occupancy.

OWNER’S SIGNATURE_________________________ Date______________

Owner’s Name (printed or typed)

Subscribed and sworn to before me this______day of_______, 20__.

Signature of Notary Public _______________________________________

POOL CONTRACTOR’S SIGNATURE_________________________ Date______________

Pool Contractor Name (printed or typed)

Subscribed and sworn to before me this______day of_______, 20__.

Signature of Notary Public ______________________________________